

Annex D – VIRTUAL AND PHYSICAL DEMONSTRATION PLAN

Note: This Annex appears in its original format.

ANNEX D – VIRTUAL AND PHYSICAL DEMONSTRATION PLAN

Virtual and Physical Demonstration Plan

Presented by

Dr. Ole Balling Aarhus University, Denmark

Scott Bradley

Keweenaw Research Center, Michigan Tech, USA

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: 1474)

AVT-308 NG-NRMM Cooperative Demonstration of Technology

Outline of the Presentation

- Objective of the coming hour
 - Introduce the NG-NRMM Spirit: A Standard and Recommendation for 3D Physics based Mobility Prediction
 - Virtual Demonstration Plan (Dr. Ole Balling)
 - Presentation of Virtual Technologies for the NG-NRMM Demonstration
 - Data Environment and Sourcing of Data
 - Modeling and Simulation Technologies
 - Participating Vendors and Collaboration Between Organizations
 - Physical Demonstration Plan (Scott Bradley)
 - Choice and Details of Vehicle Platform and Instrumentation
 - Introduction to the Acquisition of Soil and Terrain Data (topology, soil, vegetation, water etc)
 - Introduction to the Vehicle Behavior (Automotive, Soft Soil and the Mobility Traverse)
 - The Resulting Mobility Prediction based on V&V and demonstrated in the Mobility Traverse (Dr. Ole Balling)

Objective of the Demonstration during the next 3 Days

Demonstrate the NG-NRMM process through Modeling and Simulation,
 Vehicle Testing and Demonstration (Illustrated through Ride-along)

Familiarity with the Capability of the Chosen Vehicle

- Understanding of the Challenges of Soil Data Collection and Variability
- Insight in the Capture of Soil and Terrain Data in Maps and Data Formats for Modeling and Simulation

- Gain insight into Different Software Organizations implementation of Mobility Prediction Solutions
- Demonstration of NG-NRMM will be Illustrated through the Mobility Traverses

The Demonstration of Technology and NG-NRMM

- NG-NRMM: Next generation NATO Reference Mobility Model:
 - A Standardization and Recommendation: The StanRec

The StanRec

- Standardization and Recommendation that Documents Practices to be Compliant with the intent of the NG-NRMM.
- Provides a Database of Examples Vehicles and Test Data that exemplifies the use of the StanRec

- Materialized through Vehicle Data, Testing and the Mobility Traverses
 - Automotive Tests
 - Soft Soil
 - The Mobility Traverse

(Sample pictures/movies of data, test and traverses)

NG-NRMM Architecture

Data Environment Technologies

• Geographical Information Systems (GIS) Data (TA1)

- Data Collection Technologies
- Several Sources (USGS, FAO, EPA, NPS, ESRI etc)
 - Topography, Slope
 - Soil Classification
 - Moisture Content

• Vehicle Data

- Vehicle Design Data
- Vehicle Measurements
- Component Measurements

• Scenario Data

- Test Specifications
- Course Scans and Data Formats

NG-NRMM Modeling and Simulation Technologies

• NG-NRMM: Vehicle Modeling:

- Leverages recent advantages in 3D Multibody Vehicle Modeling
 - Automotive Virtual Testing
- Brings in Terramechanics
 - TA 2: Simple Terramechanics
 - Bekker-Wong Type Models etc
 - TA 3: Complex Terramechanics
 - Discrete Element Method for Soil Representation
- NG-NRMM Adds Uncertainty Quantification (TA5)
 - Harnesses Variation in Data input to Mobility Performance Metrics

NG-NRMM Modeling and Simulation Technologies

- Vehicle System
 - Based on 3D Multibody Dynamics
- Advancement in Suspension Systems such as
 - Independent Multilink Suspension with Bushings, Coils and Air Springs
 - Mechanical or Hydraulic Roll Stabilizer Technology etc
- Steering Systems
 - Rack and Pinion or 4 Bar Linkage Steering
 - Multi-Axle Steer and Steer-by-Wire Systems
- Engine/Powertrain
 - Throttle Dependent Torque and Fuel Maps
- Tires
 - Fiala, Pacejka, FTire, Swift, Complex Soiletc.

 $10^1 - 10^2$ degrees of freedom models

NG-NRMM Modeling and Simulation Technologies

- 3D Vehicle Dynamics Mobility Prediction
 - Hard Surface through Coefficient of Friction and Advanced Tire Models
 - Soft Soil through Advancements in Terramechanics Modeling
- Simple Terramechanics (TA 2)
 - Bekker-Wong Type Models
 - Bevameter Data and Laboratory Test
- Complex Terramechanics (TA 3)
 - Based primarily on Laboratory Soil Tests
 - Can use:
 - Cone Index
 - Simulated Bevameter

Add ST and CT figures

UQ Process $y = f(\alpha_1, \dots, \alpha_n)$

Geo DB

NG-NRMM Mobility Metrics Technologies

Mobility Metrics

90% CL

50% CL

Operational Planning Tools

Vehicle Design and Acquisition

Tools

Stochastic Mobility Maps

• NG-NRMM:

- Vast Availability of Simulation Outputs
 - Conventional NRMM Output Metrics Possible (Speed Made Good, Go-NoGo Maps)
 - Additional Metrics such as Output Data from Transient Events.

Add map and path figures

- Verification and Validation Possible (TA 6)
 - Depends on Test Data Availability
 - Sample Vehicles and Test Data Available (Wheeled Vehicle Platform and Fed-A)
- Path Planning with 3D Dynamics

STO-TM-AVT-308

8 1 1.5 2 2.5 3 3.5

A 10

CDT Participating Organizations

• 4 Countries, 3 Vehicle Modeling Approaches, 2 Terramechanics Approaches

Benchmark Participants	Country of Origin	Simulation Software	Terramechanics Approach
Advanced Science and Automation Corporation	USA	IVRESS/DIS (MBS)	Complex
CMLabs	CA	Vortex (MBS)	Simple
MSC Software	USA	ADAMS (MBS)	Simple/Complex
Vehicle Development Systems Corp	CA	NWVPM (Force Balance)	Simple
Aarhus University/JPL	DK/USA	ROAMS (Recursive MBS)	Simple
CSIR (South Africa)	ZAF	MobSim (Force Balance)	Simple

Virtual and Physical Demonstration Plan

- The Virtual Demonstration Links to the Physical Demonstration by
 - Choice of Vehicle for Demonstrating NG-NRMM Capability
 - Instrumentation
 - Test Plan including Automotive and Soft Soil Tests

Physical Data Collection Plan

- Vehicle Introduction (Why FED-A?)
- Collection Plan for Vehicle Data Set
 - General Physical Data
 - Ricardo Data Set
 - ATEC Test Report
- Collection Plan for Terrain Data Set
 - Details to be Discussed in Today's Thrust Area 1 & Wednesday's Software Presentation
- Collection Plan for Vehicle Behavior Data Set
 - Data Acquisition / Instrumentation
 - As Tested Configuration
 - Calibration (General Automotive Tests)
 - Soft Soil Behavior (Sand Grade & Draw Bar)
 - Mobility Traverse (Speed Made Good Estimation)

Introduction to FED-A

- TARDEC Owned Vehicle
- Fuel Efficiency Demonstrator Alpha (FED-A)
- Developed by Ricardo
- Full Vehicle Database Already Collected
- Database Open to Public Dissemination
- Subjected to Some US Army Test & Evaluation Command Testing
- Appropriate Size and Weight
- Suitable Off-Road Capability & Durability
- Liberal Use of COTS Components
- Some Spare Part Packages Available

General Vehicle Information

COLLABORATION SUPPORT OFFICE

SCIENCE AND TECHNOLOGY ORGANIZATION

- Full 3D CAD Package
- As Delivered Scanning of Vehicle
- VIPER Test Data
- As Tested CG Verification
- Test Weight 12,333 lbs

3D Point Cloud of Actual Test Asset

TEST RESULTS

Fuel Efficiency Ground Vehicle Demonstrator (FED) in Low Ride Height VIPER Test Number: 421 Date of Test Completion: 12 March 2011

Figure 2: FED positioned and restrained on the VIPEF

Vehicle Name:	FED		Pounds	Kilograms
Fuel Level:	5/8 Full of Fuel	Total Weight	11368	5167
Tire Pressure Left/Right):	58/59 psi 63/61		Inches	Centimeters
		Overall Length	203.00	515.62
dditional Information:		Overall Width	90.50	229.87
		Overall Height	84.88	215.58
ire Type: 600dyear G275 MSA 335/65R22.5		Longitudinal CG	61.70	156.72
		Lateral CG	-0.20	-0.51
etails of vehicle configuration in Appendix A.		Vertical CG	35.38	89.85
etails of vehicle	ride height in Appendix B.	1	ft-lb-sec ²	kg-m ²
		Roll Inertia (I _{xx})	2405	3259
		Pitch Inertia (L _w)	7624	10330
		Yaw Inertia (I ₂₂)	7847	10632
		Roll / Yaw Product (I)	N/A	N/A

Vehicle Data Set (Suspension & Steering)

- Independent Suspension Front & Rear
- Coil over Air & Frequency Dependant Damping
- Adjustable Ride Height
- Advanced & Challenging But Not Hybrid

Key Suspension Package Dimensions •Total width (including tires) is 90.1 inches •Track width is 76.9 inches •Wheelbase is 130 inches •Kingpin angle is 11.4° •Ground offset is 57.1mm •Castor angle is 2° •Mechanical trail is 16.2mm •Maximum suspension articulation is +/-180mm •Highway ride height is at 0mm •Obstacle Ride Height is at +70.5mm •Vehicle approach angle at obstacle condition is 60° •Vehicle departure angle at obstacle condition is 63° •Vehicle breakover angle at obstacle condition is 14.3°

Vehicle Da

- **Cummins 4 Cylinder 4.6L Engine** •
- Four Wheel Drive with Low & High Range •
- **Differential Lock and Traction Control** •
- Transmission ٠

ta Set (Power Train)	Engine Performance Curve Cummins Ltd Yarm Road, Darlington www.cummins.com Compression Ratio 17.3:1	ISB4.5E5185 ISB4.5E5185 ISB508@250 T00Nm@122 Curve Nu22 Curve Nu22 Curve Supervision Curve Supervisio	Jppm Automotive 0-1600rpm
	Cylinders 4 Bore 107 mm Stroke 124 mm	e Emission Contraction Aspiration Displacement Status	Euro s Turbocharged and Charge Air Cooled 4.5L Preliminary
Halfshafts Transfer Case Transmission		Torque 0 <th>Torque Cutest 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1800 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100</th>	Torque Cutest 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1700 100 1800 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100 1000 100
Propshafts Axles Halfshafts		Power 	Power Clock 700 30 700 30 700 34 700 42 1000 42 1000 42 1000 42 1000 42 1000 42 1000 42 1000 42 1000 42 1000 42 1000 43 1000 43 1000 114 1000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000 138 2000
	Performance data shown is nominal and	is to 80/1269/EEC (as amended) conditions of	990 mbar barometric pressure and 25
Fuel System	deg C air intake temperature. All data is i inlet and exhaust restriction at or below I Customer Engineering	based on the engine operating with fuel system. Datasheet limits. Not included are air compress.	water pump, lubncating oil pump with r, fan and alternator. Certified within 5%
		Cummins Confidential	
Exhaust System Atternation Trans Ratio Trans Ratio Trans Ratio Trans Ratio Trans Ratio Tran	0.582 Ade Eft 0.96 Wheelthub Eft 0.983 TransEft 0.983 TransEft	Engree Output B-2 B-2 Available B-2 Reddin Low Range B-2 Reddin Low Range 3.221 B-2 1.556 B-2 4.227 B-2	Avalable Avalable Regit in Low Range Regit in Hugh Range Peer Pessenger Side Tree 10.970 b-1 Available in 4 Low 5.509 b-1 Regit Regit in Low 5.509 b-1 Regit
Air Intake	Froe Proceduat		11.007 b-8 Available in 41.0v 6.575 b-8 Regid 22.173 b-4 Available in 41.0v 13.150 b-8 Regid 10.075 b-8 Regid 10.07

Final Drive Gear Ratio ⁽²⁾	4.88
Final Drive Efficiency - halfshaft	0.995
Axle Ratios	4.88
Axle Efficiency	0.965
Transmission Spin Losses	
Propshaft	0.992

Vehicle Data Set (Tire)

- Goodyear Fuel Max 335/65R22.5
- ATEC Collected Tire Contact Data For Severa Pressures and Loads
- General Tire Stiffness Measured
- Pacejka Tire Data Available
- Run Flat Rims

TABLE 2.3-5. GOODYEAR FUEL MAX 335/65R22.5 GROUND PRESSURE RAW DATA

PRESSURE (psi)	LOAD (lb)	NOMINAL AREA (in. ²)	SPECIFIC AREA (in. ²)	NOMINAL PRESSURE (psi)	SPECIFIC PRESSURE (psi)	DEFLECTION (in.)
75	1,000	31.6	17.2	31.7	58.2	0.360
75	3,000	61.4	36.2	48.9	82.9	0.924
75	5,000	82.8	50.6	60.4	98.7	1.416
75	7,000	100.8	63.6	69.4	110.0	1.896
60	1,000	33.4	15.9	29.9	62.8	0.396
60	3,000	66.6	39.2	45.1	76.6	1.056
60	5,000	89.8	55.6	55.7	89.9	1.632
60	7.000	110.7	70.3	63.2	99.6	2.196
30	1.000	39.1	19.4	25.6	51.7	0.624
30	3,000	87.2	50.5	34.4	59.4	1.668
30	5,000	125.9	75.7	39.7	66.0	2.652
30	7,000	154.6	93.7	45.3	74.7	3.600
15	1,000	58.7	29.2	17.0	34.2	0.960
15	3.000	128.3	69.6	23.4	43.1	2.628
15	5,000	181.5	99.8	27.6	50.1	4.308
15	7,000	221.9	123.4	31.5	56.7	4.368

Vehicle Behavior Data Set (Instrumentation)

- 97 Channels Simultaneously Collected @ 1600 Samples per Second
- On Board Vehicle Network Monitoring
- CG Motion Using Three Different Methods
- Axle Torque
- No Wheel Force Transducer

nph	Racelogic	VBox 3i RTK	Doppler-based GPS speed sensor
-			Doppier-based GFS speed sensor
deg	Racelogic	VBox 3i RTK	Vehicle CG, IMU-compensated Dual Antenna GPS
deg	Racelogic	VBox 3i RTK	Vehicle CG, IMU-compensated Dual Antenna GPS
deg	Racelogic	VBox 3i RTK	Vehicle CG, IMU-compensated Dual Antenna GPS
deg	Racelogic	VBox 3i RTK	Vehicle CG, 2cm Accuracy with DGPS correction
ft	Racelogic	VBox 3i RTK	Vehicle CG, 2cm Accuracy with DGPS correction
g	PCB	T356A02	LF, RF, LR, RR Wheel Locations
mm	Firestone	Intelliride Sensors	LF, RF, LR, RR (Lower A-arms)
g	Systron Donner	MP-GDDDQVVV-100	Vehicle CG
eg/s	Systron Donner	MP-GDDDQVVV-100	Vehicle CG
g	PCB	356841	Driver and Passenger Seat 0.5 to 1000Hz, 100mV/g, Conforms to ISO 10326-1
8	PCB	T356A15	Driver and Passenger Seat 2 to 5000Hz, 100mV/g
deg	RLS Renishaw	MR047B040A076B0 LM13IC10BCA10F00	Radial Magnetic Encoder and Reader Head
deg	Коуо	TRD-N5000-RZVWD	5000 PPR Incremental (Quadrature) Encoder
b-ft	Vishay	Foil Strain Gages	LF, RF, LR, RR Wheel Locations Half-Shaft Telemetry Units
lb	Futek	FSH03184	Low Profile Pedal Force Sensor, 300lb Range
lb	Sensotec	RI/6020-06	Cable Pull Tension Loadcell
d d d d d d d d d d d d d d d d d d d	leg leg ft g nm g g g g jeg jeg b-ft lb	leg Racelogic leg Racelogic ft Racelogic ft Racelogic ft Racelogic ft Racelogic ft Racelogic g PCB g Systron gs/s Donner g PCB g PCB g PCB g PCB g RCB leg RUS Renishaw Seg bb Futek	leg Racelogic VBox 3I RTK g Racelogic VBox 3I RTK leg Racelogic VBox 3I RTK rt Racelogic VBox 3I RTK g Racelogic VBox 3I RTK g Racelogic VBox 3I RTK g PCB T356A02 mm Firestone Intelliride Sensors g Systron MP-GDDDQVVV-100 g PCB 356B41 g PCB 356B41 g PCB T356A15 Renishaw LM131CI08CA10F00 leg Koyo TRD-N5000-RZVWD bc-Hr Vishay Foll Strain Gages ib Sensot R/6020-66 Rio20-66

s-seconds

ft-feet

Source	Parameter	Description	EU	Bus Hz
J1939	Acc_PedPos	Accelerator Pedal Position	%	20
J1939	Eng_Spd	Engine Speed	rpm	50
J1939	Eng_ActTq	Engine Torque	%	50
J1939	Trans_Output_Speed	Transmission Output Speed	rpm	100
J1939	Trans_Current_Gear	Transmission Gear Range Attained	1	10
J1939	TC_Lockup_Engaged	Torque Converter Lock/Unlock	1	100
J1939	Trans_Gear_Ratio	Transmission Actual Gear Ratio	1	10
Aisin	Whl_Spd_Rear_Left	Wheel Speed- Rear L	rpm	50
Aisin	Whl_Spd_Rear_Right	Wheel Speed- Rear R	rpm	50
Aisin	Whl_Spd_Frnt_Left	Wheel Speed- Front L	rpm	50
Aisin	Whi Spd Frnt Right	Wheel Speed- Front R	rpm	50

GPS - Global Positioning Unit

nm - millimeter

- Terrestrial LIDAR Scanning
- Conversion to Geotiff & TIN
- Laboratory Soil Strength Data
- In Situ Data Set
- Five (5) Soil Types Identified
- Several Formats

Terrain Data Set

Vehicle Behavior Data Set (Test Configuration)

- Load Case Lightly Laden Close to VIPER Test Weight
- Ride Height Set @ High
- Front & Rear Differentials Locked for Soft Soil and
- Central Tire Inflation System OFF
- Tire Pressure @ 35 psi & 60 psi to Mathc Available Pacejka Data
- ABS and Traction Control OFF

Vehicle Behavior Data Set (General Automotive Tests)

• Paved Tests

- Wall to Wall Turning
- Constant Cornering
- Acceleration
- Braking
- Double Lane Change (Paved & Gravel)

Obstacles

- V-Ditch
- Vertical Steps
- Longitudinal Gradability (Paved @ 60%)
- Obstacle Avoidance on 30% Side Slope

• Ride Quality

- RMS 1.0, 1.5, 2.0, 3.0, 4.0
- Half Rounds 4", 8", 10", 12"

Vehicle Behavior Data Set (Soft Soil)

COLLABORATION SUPPORT OFFICE

SCIENCE AND TECHNOLOGY ORGANIZATION

- Longitudinal Gradability
 - 2NS Sand up to 30%
- Drawbar Pull
 - Fine Grain Dry
 - Fine Grain Wet
 - Coarse Grain Dry

Vehicle Behavior Data Set (Mobility Traverse)

- Test Comparison to Speed Made Good Map Challenging
- Mobility Traverse Introduced as Subsitute
- Compilation of Mobility Events to Exercise NG Simulation and to Highlight Issues with Legacy
- Conducted as a Continuous Circuit with Stops to Engage Low Range & Differential Lock
- Driver Instruction to Go Fast But Be Safe & Protect Vehicle

Vehicle Behavior Data Set (Mobility Traverse)

STO-TM-AVT-308

Show a Sample Set of Mobility Traverse (Ole)

Mobility Traverse

Backup Slides

Vehicle Modeling Fidelity

- Which Fidelity is required for NG-NRMM compliance?
 - > Depends on the end user:

The standard does not dictate this, however, Vehicle Data and Test Data is available to demonstrate level of accuracy

Same Data Available, Different Implementations

Computation Time

Vehicle Simulation Models – Pros and Cons

	Modeling technique		Pros	Cons	
hicle	Few Body Model (chassis, axles) Lookup tables for Composite Suspension Forces, Camber, Toe versus Deflection.	OVWxSw(Thes) OVWxCos(Thes) OVWxCos(Thes) Over the theory of the theory o	Easy to set up model. Fewer Input Data Fast computation – Real or Near Real-Time.	Less Accurate	Accur
Vel	Detailed MBS: Individual Suspension Components, Bushings, Drive Shafts, steering mechanism etc.		Can Predict Internal Vehicle Metrics of Interest, Forces in Joints and Bushings, Structural Loading of Flex Members. etc	Requires Large Input Data Set Computational Expensive High Accuracy with Good Input Data	acy
nics	Cone Index, VCI		Few Input Data, Existing Data Available. Fast Computation	Limited by the conditions of testing. Less accuracy on Sloped Terrain	
mecha	BW		Some Data Available Fast Computation Good Correlation with Most Soil on Flat	Limited by the Extensive Testing Less accurate on Large Slopes	
Terra	DEM		Indicate Good Correlation with Test Results For All Soft Soil	Requires Calibration. Very Long Computation time.	

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: 1474)

ANNEX D – VIRTUAL AND PHYSICAL DEMONSTRATION PLAN

